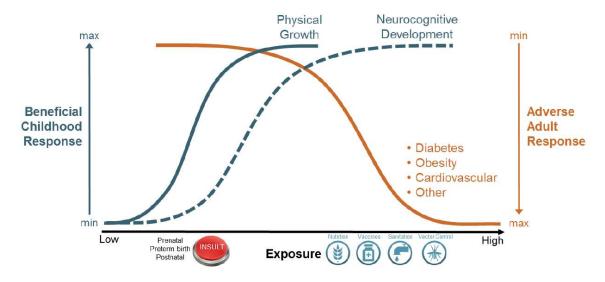


USING CDISC TO SUPPORT THE HEALTHY BIRTH, GROWTH, & DEVELOPMENT KNOWLEDGE INTEGRATION


Tom Peppard, Certara LP (Consultant to the Bill & Melinda Gates Foundation)

STUNTING IN YOUNG CHILDREN

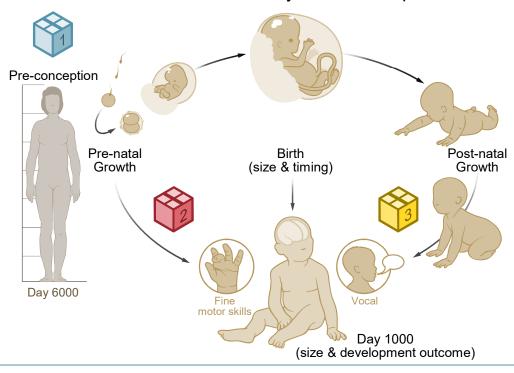
- Definition of stunting: height < 2 SDs below the median at a given age.
- World Health Organization goal: reduce stunting by 40%, from 165M to < 100M children by 2025.
- Stunting early in life: associated w/ reduced educational & economic achievement later in life.

But overtreatment is risky:

- Rapid catch-up after infancy may increase risk of metabolic & cardiovascular diseases in adulthood.
- We need improved understanding of relation between exposure and response.

OVERARCHING QUESTIONS: PATHWAY TO GOAL

1. Lifecycle:


- To what extent is growth faltering explained by pre vs postnatal insults?
- What kind of recovery can we expect in infants born small for gestational age (SGA)?

2. Outcomes:

 Can we quantitatively characterize the relation and interaction between physical growth and neurocognitive development?

3. Pathways:

 Are there disproportionately large contributions on growth faltering from certain pathways, and can we rank-order risk factors? Focus on physical and cognitive outcomes in 1,000 days from conception

90% OF THE STUNTING BURDEN LIES IN 39 COUNTRIES

How do we deliver the right intervention(s), to the right child, at the right time, and at the right price?

Americas:

Guatemala Peru

Northern Africa:

Chad Egypt Sudan South Sudan Western Africa:

Burkina Faso Côte d'Ivoire

Ghana Mali

Niger Nigeria

Middle Africa:

Angola Cameroon DR Congo **Eastern Africa:**

Burundi Ethiopia Kenya

Madagascar

Malawi

Mozambique

Rwanda Uganda

United Republic of Tanzania

Zambia

Southern Africa:

South Africa

Western Asia:

Iraq Turkey Yemen

Southern Asia:

Afghanistan Bangladesh Cambodia India

Nepal

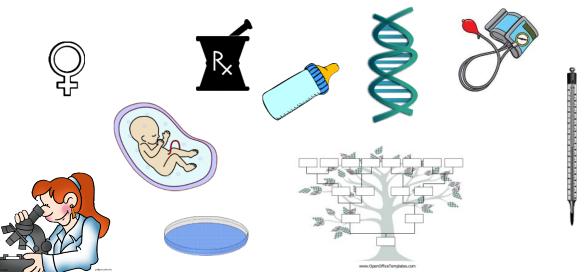
Pakistan

South-Eastern Asia:

Indonesia Myanmar Philippines Viet Nam

Current estimates: 40.37% to 32.18% (20% reduction).

Source: The Lancet, Volume 382, Issue 9890, Pages 452 - 477, 3 August 2013


HEALTHY BIRTH, GROWTH, & DEVELOPMENT knowledge integration (HBGDki)

- Launched in 2013 by the Bill & Melinda Gates Foundation.
- Preterm birth, physical growth faltering, and impaired neurocognitive development:
 - Learn from currently available data.
 - Generate novel insights using modern data analytics.
 - Quantify effects of modifiable risk factors.
 - Generate predictive models to develop effective solutions.
- Multidisciplinary group of investigators contributed data from 130 studies (total, 9.8M children), including:
 - Observational studies:
 - Longitudinal growth and neurocognitive outcomes.
 - Longitudinal growth and fetal ultrasonograms.
 - Special populations (intergenerational, migrants, children of immigrants, high-risk pregnancies/births).
 - Interventional studies (nutrition, water, sanitation, hygiene, vaccine).

HOW DOES HBGDki USE CDISC?

Healthy Birth, Growth, & Development knowledge integration

- Data curation process: intake; harmonize to common data standard (CDISC); prepare for analysis
- Facilitates combining data across studies, using standard tools, compiling detailed inventory
- Many common CDISC SDTM domains are used:
 - Questionnaires
 - Subject characteristics
 - Clinical events & medication
 - Reproductive system
 - Associated persons
 - Vital signs
 - Morphology
 - Laboratory findings
 - Microbiology findings

SPECIAL CASES FOR OBSERVATIONAL STUDIES

Some CDISC definitions do not apply directly to studies without a treatment intervention

Typical CDISC	HBGD <i>ki</i> Usage
AE vs MH dichotomy	Using CE in all cases to avoid implying a pre/post distinction where one does not exist.
RFSTDTC defines the study Baseline	Relative days important, but use DOB as the milestone. e.g., LBDY=1 is day of birth.
VISITNUM, VISIT reflect study design	Many observational studies still have visit schedules.
Study epochs	 Used to reflect pregnancy or developmental milestones rather than study design characteristics. Prepregnancy, T1, T2, T3, intrapartum, postpartum. In utero, delivery, neonatal, infancy, childhood.
Study arm describes randomization	Study arm describes different cohorts that were enrolled (e.g., case-control studies).

AD HOC DOMAINS IMPROVISED FOR HBGDki

Interest in developing as CDISC special purpose domains?

Anthropometry & auxology

- Height, weight, BMI, head, waist, arm circumferences, and Z-scores for these
- Body composition estimates: fat mass, fat-free mass
- Bone and limb length measurements

Household variables

- Socioeconomic status, information about possessions, educational status of parents
- Physical quality of home including roof, wall, and floor materials
- Water, sanitation, and hygiene

Nutrition (currently under development as CDISC special-purpose domain)

CHALLENGES & LIMITATIONS

Diversity of datasets continues to increase in ways that are not anticipated

- Data domains that are unfamiliar to clinical trial experts
- Need to react to new data quickly (constant backlog of data to be integrated for first year of project).
- Should have anchored non-CDISC domains to an existing ontology

Study design characteristics

- Not currently using CDISC Study Design domains to full potential
- Need better tools to capture this metadata